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Abstract. We review the recently completed Phase II measurements of the SIMPLE
project, and briefly describe its in-progress Phase III.

1. Introduction

The customarily recognized underground physics is in recent times joined by astroparticle physics
activities, by virtue of the rock overburden which reduces the cosmogenic radiation backgrounds that
would otherwise make its experiments unfeasible. SIMPLE is one such activity, which searches for
evidence of the dark matter of the universe in the form of nuclear recoil events generated by the elastic
scattering of weakly interacting massive particles (WIMPs) with target nuclei. Its recently completed
Phase II measurements, following some 10 years of R&D activity in the Laboratoire Souterrain à Bas
Bruit (LSBB) [1], have yielded exciting new results in this search [2, 3].

2. Phase II review

The Phase II [2, 3] measurements were conducted in two Stages, between 27 October 2009 – 5 February
2010 and 12 April–22 July 2010, each comprising 15 high concentration superheated droplet detectors
(SDDs), 1-2% suspensions of micrometric superheated liquid C2ClF5 droplets in a viscous-elastic 900ml
gel matrix, which undergo transitions to the gas phase upon energy deposition by incident radiation. The
physics of the superheated liquid response to incident radiation dictates that [4]: (i) the energy deposited
be greater than a thermodynamically defined minimum energy, and (ii) this energy be deposited within a
thermodynamically defined minimum distance inside the droplet. Together, energy depositions of order
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Figure 1. Schematic setup of the Phase II SIMPLE experiments, showing the SDDs (dark blue) in their water pool
(medium blue) within GESA, surrounded by water (light blue) and wood + PE shielding (brown).

∼150 keV/�m are required for a bubble nucleation, which renders the technique effectively insensitive to
the majority of traditional light particle backgrounds (including electrons, �’s and cosmic muons) which
complicate more conventional dark matter search detectors. Both �’s and neutron-generated recoil events
fulfill the two criteria, and constitute the principle experimental backgrounds.

The SDDs were operated in the 1500 mwe deep, 60 m3 GESA facility of the LSBB. The cavern
is shielded from the neutrons of the rock environment by a 30–100 cm thickness of concrete, which
is internally sheathed by a 1 cm thickness of iron, as seen in Fig. 1. The SDDs were immersed in
a temperature-controlled, 700 liter water pool within the cavern, which rested on a dual vibration
absorber placed atop a 30 cm thick wood platform, resting on a 50 cm thick concrete floor. The pool was
surrounded by layers of sound and thermal insulation. An additional 50–75 cm thick water shielding
surrounded the pool and platform, with a 75 cm water thickness overhead; 50 cm of water separated the
pool bottom from the detector bases.

The ambient radon level varied seasonally as a result of water circulation in the mountain, and
is of concern because of its �-generating decay chains. The level was both monitored, and reduced
during measurements by replacing the cavern air at ∼0.2 m2s−1 and by circulation of the water-pool at
25 liter/min (equivalent to replacing the top 1 cm water layer each minute) through the temperature-
controlled external cryo-thermostat; the (�,n) contribution was further reduced by the short radon
diffusion lengths of the SDD construction materials (glass, plastic, metal), the SDD N2 over-pressuring,
and the glycerin layer covering the SDD gel matrix.

Monte-Carlo simulations of the on-detector neutron field [5], based on radio-assays of the shielding
materials and accounting for spontaneous fission, decay- induced (�,n) reactions and (�,n) reactions
in the rock, showed negligible variations for concrete thicknesses ≥ 20 cm. The Stage 1 shielding was
augmented in Stage 2 by an additional 20 cm thickness of poly ethylene directly below the water pool,
reducing the expected neutron background by a factor 3 to 0.33 ± 0.001 (stat) ±0.038 (syst) evt/kgd.

Each SDD was fabricated in the 210 mwe underground clean room, following previously described,
standard procedures [6], then transported to GESA where it was capped with an electret microphone [7],
pressurized to 2.00 ± 0.05 bar, and immersed in the water pool held at 9.0 ± 0.1 ◦C.

Stage 2 obtained a total exposure of 13.67 kgd, as a result of the detector installation protocol and
mechanical failure of 4 SDDs during the run because of over-pressuring; no weather-induced data losses
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Figure 2. Histogram of neutron-induced nuclear recoil and �-induced events as a function of the event amplitude.

occurred, in contrast to Stage 1 which obtained a total of 13.47 kgd of data as a result of frequent, short
term power failures during December and January. The SDD pressures in Stage 2 were however allowed
to increase in order to verify the SDD recoil energy threshold (8.0 ± 0.1 keV), for pressures ≤ 2.2 ±
0.1 bar: together with the loss of 4 devices to over-pressuring induced mechanical failure, the resulting
data cut reduced the exposure to 6.71 kgd.

The recorded signals were analyzed for acoustic backgrounds, and a particle-induced set extracted
in each stage [2, 3], which comprised ∼2% of the respective event records. Neutron- and �-calibrations
of the SDDs defined a nuclear recoil acceptance window for signal amplitudes (S) with an acceptance
of >99%, in which 10 and 1 recoil events were identified for Stage 1 and 2, respectively.

Since both rates were non-zero but consistent with the neutron background estimates, upper limits
on the possible number of WIMP events in the data set was calculated for a 90% C.L. for each
measurement Stage by applying the Feldman-Cousins method [8], based on the observation of j recoil
events against an estimated neutron background of k events. The results were then merged to obtain
an overall rate, which were analyzed via Lewin & Smith [9] to obtain the impact on the WIMP phase
space.

The results are presented in Figs. 3 and 4, together with those from other leading search together
with leading searches, in the form of standard exclusion contours at a 90% C.L. where � is the relevant
WIMP interaction cross section and MW is the WIMP mass; in general, the area above a contour is
excluded by the search experiment, with the area below unexplored. Aside from providing the most
restrictive limits below 60 GeV/c2 on a possible spin-dependent WIMP-proton coupling to date (Fig. 3),
they intersect for the first time with results from IceCube and SuperKamiokande (shown as broken
contours). Also note that of the three direct search contours shown, two are from the competitive North
American PICASSO and COUPP searches which also use superheated liquids (with substantially larger
exposures).

In contrast, the spin-independent results (Fig. 4), while lacking the exposures and coherent �
enhancement of their heavier, more sensitive counterparts, join XENON and CDMS in discounting a
significant part of the recent low WIMP mass region of current interest identified by the closed contours
of CoGeNT, CRESST and DAMA/LIBRA. This is because of the relatively low recoil energy threshold
of SIMPLE, which flattens the contour at low MW to provide an increased sensitivity.
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Figure 3. Current results and Phase III sensitivity levels in the spin-dependent sector, with the areas above the
contours being excluded. The contours labelled 100 and 500 kgd represent the sensitivities expected in Phase
III from the corresponding exposures. The area labelled “CMSSM” represents the theoretically-suggested region
allowed by the constrained minimal supersymmetric model.

Figure 4. Impact of current results in the spin-independent sector, the areas above the contours being excluded. The
enclosed areas indicate the regions currently identified by CoGeNT, CRESST and DAMA/LIBRA within which
possible light mass WIMPs are not excluded. The contours labelled 100 and 500 kgd represent the sensitivities
expected in Phase III with the corresponding exposures.

3. Phase III

The active target mass of SDDs comprises only 1–2% of the detector volume, which becomes untenable
when envisioning exposures of 100–1000 kgd. Phase III replaces the SDDs with a prototype BC (Bubble
Chamber variant): unlike a SDD, a BC involves no distribution of superheated liquid in a gel matrix, so
that the device volume ∼ active volume. A single 0.5 kg BC, prototyped by SIMPLE in 2010, differs
from more conventional devices in the use of the SIMPLE purified glycerine/food-gel as an internal
sheathing of the containment, providing the same smooth freon interface as with the SDDs (to reduce

03002-p.4



i-DUST 2014

the probability of spontaneous nucleation: recompression intervals of up to ∼12 h have been observed),
while maintaining the containment radio-purity (�-induced events <0.5 evt/kgd), and preserving the
reduced cost of detector fabrication.

Phase III, with a 5 kg BC, provides ∼25× the active Phase II mass in ∼ a quarter of the volume,
combined with additional, purified, water neutron shielding. The prototype scale-up to a 5 kg liquid
containment is constrained by commercial plastics and their ability to sustain a 10 bar recompression:
at present, a “home water filter” prototype is recompressed using a pressure-activated system, with a
new piston-based recompression prototype to separate the recompression gas (N2) from the gel and
superheated liquid completing development.

The loss of the viscous-elastic gel matrix as the response medium should preclude the use of the
previous low frequency instrumentation (since the signal derived from the gel response to a bubble
nucleation event): the primary particle-induced event signal obtains [10] from the differing number of
proto-bubbles formed in the superheated liquid by recoil ions and �’s, which lie in the high frequency
regime of ∼130 kHz. Recent prototype tests using an externally-polarized condenser microphone with
a flat response over 10–150 kHz however surprisingly yielded signals at only ∼15 kHz, suggesting
the continuing effect of the gel/glycerine matrix and enabling the continued use of the previous
instrumentation; further study on this issue is in progress.

Phase III is to be executed in GESA, requiring a further decrease in the on-detector neutron flux:
we envision an increase of the current water shield thickness to 1.3 m, as constrained by the GESA
geometry, with the water replaced by purified reactor containment water which involves a resin-based
treatment process which reduces the heavy metals content by 102–103: a neutron background rate well
below 10−5 kgd is estimated, with zero neutron-induced background for exposures of ∼103 kgd.

Estimated Phase III sensitivity levels in the two search sectors with exposures of 100 and 500 kgd,
using two 5 kg BC prototypes and assuming the same particle-induced event discrimination as in Phase
II (with zero candidate events), are also shown in Figs. 2 and 3. One two-week exposure, assuming a
20% loss of measurement time due to recompressions, is expected to provide more than a factor 10
improvment in current results.

Assuming the success of Phase III, the project measurements are to be transferred to the Capsule of
the LSBB [1] for a Phase IV using twenty 50 liter BCs with a 2m all-around purified water shield, with
the intent to conclusively observe the elusive WIMP . . . or deny its existence.
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