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Abstract. The seismic wavefield can be approximated by a sum of elliptical
polarized motions in 3D space, including the extreme linear and circular
motions. Each elliptical motion need to be described: the characterization
of the ellipse flattening, the orientation of the ellipse, circle or line in
the 3D space, and the direction of rotation in case of non-purely linear
motion. Numerous fields of study share the need of describing an elliptical
motion. A review of advantages and drawbacks of each convention from
electromagnetism, astrophysics and focal mechanism is done in order to
thereafter define a set of parameters to fully characterize the seismic
wavefield polarization.

1. Introduction

The seismic wavefield is a combination of polarized waves in the three-dimensional (3D)
space. The polarization is a characteristic of the wave related to the particle motion. The
displacement of particles effected by elastic waves shows a particular polarization shape
and a preferred direction of polarization depending on the source properties (location and
characteristics) and the Earth structure. P-waves, for example, generate linear particle motion
in the direction of propagation; the polarization is thus called linear. Rayleigh waves, on
the other hand, generate, at the surface of the Earth, retrograde elliptical particle motion.
Three-component seismic stations record the trajectory of a particle displacement at the free
surface of the Earth, and thus the polarization. The change in polarization can be analyzed
and interpreted to improve our understanding of both the source process and the Earth
structures illuminated by the recorded waves. The objective of the polarization analysis is the
determination of the state of polarization consisting in a type of polarization (linear, purely
elliptical or circular) and an orientation of the polarization in 3D space. This polarization
analysis requires a system of parameters fit to describe an object and its attributes in space.
Numerous fields of study share this need. In the following, in order to be able to build
an efficient parameter system in seismology, a reviewed convention from other disciplines
(electromagnetism, astrophysics and focal mechanism) is done and a parallel between these
disciplines and seismology is drawn.
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2. Why an elliptical model?

A 3-component record of a monochromatic wave can be expressed as followed:
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where A4; and ¢@; represent the amplitude and the phase of the component i.

This expression corresponds to the equation of an ellipse as shown in [1]. Thus,
the trajectory of a particle through the propagation of a monochromatic wave describes
necessarily a full ellipse as a function of time every one time period T=1/f. The vectors
p and g can be seen as the positions on the ellipse at t=0 and at t=T/4. The extreme cases
of linear and circular polarizations will be described by respectively collinear p and g (linear
case) and | p| |=| ¢ (circular case).

Using Fourier analysis, an arbitrary real signal can be decomposed into a sum of quasi-
monochromatic signal:
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Fourier transform of x(t) e.g. the Stockwell transform [2], Re and /m correspond to real

and imaginary part operator.

The seismic wavefield records can be decomposed into a sum of quasi-monochromatic
waves, and thus a sum of elliptical motions. To describe each elliptical motion, the
characterization of the ellipse flattening, the orientation of the ellipse, circle or line in the
3D space, and the direction of rotation must be defined.

3. Polarization and orientation conventions in other disciplines
3.1 Electromagnetism

In physics, the notion of polarized waves is not only defined in seismology. In
electromagnetism, wave polarization is defined by the temporal behavior of a transverse
electromagnetic wave at a given point in space. The state of polarization is investigated in the
plane perpendicular to the wave’s direction of propagation. Two parameters are introduced to
characterize this elliptical state of polarization (see Fig. 1) [1]:

— the signed ellipticity (pg) or the ellipticity angle (y = atan (p))
This parameter specifies the shape and the direction of rotation. It is defined as the ratio
between the semi-minor axis (b) and the semi-major axis (a): ps = :l:g. The signed
ellipticity values (respectively ellipticity angle) range from —1 to 1 (resp. from —7 to
7)- A zero value (resp. 0) corresponds to a purely linear motion, and +1(resp. £7) to
purely circular motion. The sign of pg (resp. ) discriminates the two possible directions
in which the ellipse may be described: handed-left or handed-right polarization.

— the inclination y
This parameter represents the angle between the major direction and the reference
direction. The inclination values range from 0 to 7.
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Figure 1. Electromagnetism parameters convention. The blue dot corresponds to the position on the
ellipse at time t = 0.

Linear and circular polarizations are special cases of elliptical polarization. The “purely
elliptical polarization” notion will be used to exclude these two special cases. Each individual
state of polarization is defined by a unique pair of shape-orientation parameters (¥, 7).
A graphical representation can be done using Poincaré’s sphere on which all states of
polarization are compressed over the surface of a sphere [3].

In order to reconstruct and not only characterize a polarized motion, one additional
parameter needs to be defined, the phase factor (¢). The phase permits to locate the point
on the ellipse at t=0. Consider a circumscribed circle with a radius of a, that is concentric
with an ellipse of semi-major axis of a. A line perpendicular to the major axis of the ellipse
is extended through the point at t=0 and intersects the circle. The phase factor is the angle
between the intersect point and the major direction, thus, the eccentric angle and not the polar
angle of the position at t=0 relatively to the major direction.

To parametrize an elliptical motion in 2D plane, four parameters are required: the semi-
major axis a, the signed ellipticity py, the inclination y and the phase factor ¢:
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The parameter system used to describe the polarization in electromagnetism fully
characterizes the shape of polarization, the direction of rotation and the orientation of
polarization relative to a reference plane. However, this system requires the a-priori
knowledge of the orientation of the polarization plane which would be a major limitation
in seismology. In seismology, the seismic wavefield is a combination of polarized waves in
the 3D space. Due to multi-pathing propagation, a plane of reference cannot be pre-defined.
Therefore, polarization parameters need to be oriented in the 3D space without pre-defined
plane of polarization.

3.2 Astrodynamics

In a gravitational two-body problem, the relative position of one body with respect to the other
follows an elliptical orbit in 3D space [4]. Therefore, the particle motion in seismology can
be considered analogous to the elliptical orbit of bodies in space. The relative orbit motion
is confined in a plane, but motions in solar system are not confined to a single plane. That is
why, in astrodynamics, a 3D representation of an orbit in space is considered (see Fig. 2).
The orbital motion is referred to a reference plane in which the direction of a reference
line is defined and called x-direction. The origin of the coordinate system is centered on one
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of the two bodies at a focus of the ellipse. Usually, the reference plane is defined as the orbit
plane of a reference object. For example, when considering the planets’ orbit around the sun,
a sun-centered coordinate system is chosen, the reference plane is defined as the Earth’s orbit
and the reference line is in the direction of the vernal equinox along the line of intersection
of the Earth’s equator and the Earth’s orbit plane. This system can be used to describe any
planet’s orbit around the sun.

The z-direction is a vector orthogonal to the reference plane, which direction is defined
by the rotation of the reference object. In the example mentioned above, the direction of
rotation of the Earth is the defining criterion for the positive z-direction.

In general, orbit planes do not coincide with the reference plane but have an inclination
angle called inclination of the orbit, I. The line of intersection between an orbital plane and
the reference plane is called line of nodes. The point where an orbit crosses the reference
plane with positive z-direction is called ascending node. The angle between the reference
line and the radius vector of an ascending node is called longitude of the ascending node,
Q. The point corresponding to the minimum orbital radius is called the pericenter. The
angle between the radius vector of the ascending node and the pericenter radius is called
the longitude of the pericenter, .

An orbital plane can be described by a local right-handed triad system (i,j,k). The i-axis is
taken to lie along the major axis in the direction of the pericenter. The j-axis is perpendicular
to the i-axis and is confined in the orbital plane; its direction is defined by the direction of the
rotation. The k-axis is taken perpendicular to the i- and j-axis.

To summarize, three angles (inclination / — argument of pericenter w — longitude of
ascending node Q) are used to relate the local orbital plane system (i,j,k) with a general
reference system (x,y,z) by a series of three rotations: a rotation around the z axis with an
angle of m, so that the x-axis coincide with the line of nodes, a rotation around the x-axis
with an angle of 7, so that the two planes are coincident, and finally a rotation around the
z-axis with an angle of Q.

Note that the inclination ranges from 0° to 180°. If the inclination is smaller than 90°
the motion is prograde whereas if the inclination is larger than 90° the motion is retrograde.
A “purely” elliptical motion in the 3D space can be fully orientated using this coordinate
system.

In seismology, the most complete polarization parametrization uses similar angular
convention [5]. The only difference lies in the choice of the origin of the coordinate system
defined at the center of the ellipse and not at a focus of the ellipse (Fig. 2). The reference
plane is the horizontal plane and the direction of reference is the North (x-axis). The
y-axis corresponds to the East and the z-vector is oriented downward. Since the origin of
the coordinate system is now at the center of the ellipse, a pericenter cannot be defined
anymore. In order to be able to orientate the ellipse, the notion of pericenter is replaced by the
notion of “positive” maximum displacement which corresponds to the position of maximum
displacement in the ellipse with a strictly positive z-coordinate. As in astrodynamics, three
angles are defined to relate the local polarization plane system (i,j,k) with a general reference
system (North, East, Down): the rake, the dip and the strike.

This system still has limitations. A purely horizontal polarization plane is a singularity
which cannot be described as both maximum displacements would have the same
z-coordinate making them impossible to differentiate. This parameter system requires the
definition of both a plane of polarization and a major displacement.

In the case of linear motion, the motion is confined to a line meaning that neither the line
of nodes nor the plane of polarization can be defined. Without a line of nodes none of the
above mentioned angles exist and a new system would have to be used like the trend and
plunge system in structural geology.
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In the case of circular motion, the norm of the displacement vector is constant over
the time, thus the position of major displacement cannot be defined and the rake becomes
irrelevant. It is worth noting that the rake, the strike and the dip defined above do not exactly
correspond to the rake, the strike and the dip used to orientate fault planes in focal mechanism
and structural.

3.3 Focal mechanism

Fault strike, fault dip, and slip rake are used to describe earthquake focal mechanisms,
consisting in fault plane orientation, and the direction of the slip displacement. The fault
strike is the azimuth of a strike line, which is the line created by the intersection of a fault
plane and a horizontal plane, relative to North. Strike is always defined such that a fault
dips to the right side of the trace when moving along the trace in the strike direction. Fault
strike values range from 0° to 360°. The fault dip is the angle between the fault plane
and a horizontal plane, with values ranging from 0° to only 90°. The slip vector shows
displacement of the hanging wall relative to the footwall, where the hanging wall is the fault
block above the fault plane and the footwall the block below the fault plane. The slip rake is
the angle between the strike direction and the slip vector. The rake values ranges from —180°
to 180°.

Using this system for polarization characterization, the polarization plane corresponds
to the fault plane, and the maximum displacement corresponds to the slip displacement. As
defined the strike and the dip permit to orientate the plane in space. However, these two
angles are not sufficient to characterize the direction of a rotating motion inscribed in the
plane and thus orientate the normal vector to this plane. The direction of a rotating motion
is an important parameter to characterize the polarization. To give an example, Rayleigh
waves usually generate at the surface of the Earth retrograde elliptical particle motion, but
the motion recorded at the surface can still sometimes be prograde, as a result of a specific
Earth structure below the recorded station.

The major limitation of the focal mechanism system is its inability to characterize a
direction of motion contrary to the astrodynamics convention. A comparison of the strike,
dip and rake for both conventions is available in Fig. 2.

4. Conclusion

The seismic wavefield can be approximated by a sum of elliptical polarized motions in 3D
space, including the extreme linear and circular motions. The study of the polarization is
a key element in the analysis of source properties and Earth structure. For this study, a
system of parameter needs to be defined to characterize the ellipse flattening, the orientation
of the ellipse, circle or line in the 3D space, and the direction of rotation in case of non-
purely linear motion. In electromagnetism, the waves’ characteristics to be described are very
similar to seismic waves’. Therefore, the parameter system would be very well adapted to our
needs if it weren’t limited by the 2D space hypothesis. To overcome the 2D limitation, the
astrodynamics provides a full 3D orientation system, presenting the only drawback of having
the origin located at a focus of the ellipse instead of the center. [S] proposed a system which
regroups the advantage of both electromagnetism and astrodynamics conventions. Finally,
[5] system must not be mistaken for the convention used in focal mechanism description.
A standardized full parameter system is required in seismology (as defined in [6]) to
provide a full characterization of any elliptical motion in 3D space including the extreme
linear and circular motions and to provide access to all parameters required in most
polarization studies.
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