Seismic anisotropy analysis at the Low-noise underground Laboratory (LSBB) of Rustrel (France)

Hermann Zeyen (University Paris-Sud XI) Jan Bereš (University Paris-Sud XI) Stéphane Gaffet (CNRS, Sophia Antipolis) Dominique Rousset (University Pau) Guy Sénéchal (University Pau)

Seismic experiments

- Structural studies
 - 3D seismic tomography
 - Seismic interferometry
 - Reflection seismics
- Methodological developments
 - Time reversal
 - Joint inversion of different data types (e.g. seismics & electric resistivity)
 - Anisotropy time lapse studies

Anisotropy

Low velocity

- In a fractured system, elastic waves propagate at different velocity parallel and perpendicular to the fractures:
- Velocity in water: 1.5 km/s
 Velocity in limestone: 5 km/s
- Parallel to fractures, velocity controlled mainly by rock

Perpendicular to fractures: Average velocity water/rock

Recorded P-wave travel times vs. offset

The two branches are interpreted as the effect of velocity anisotropy

Anisotropy modelling

As simple first approximation, the arrival times "t" can be described by the following formula ("d" is offset):

$$t(d, \alpha) = \frac{d}{v + \frac{\Delta v}{2} \cos(2(\alpha - \alpha_0))}$$

By inversion of the measured arrival times, we search the average velocity "v", the difference between maximum and minimum velocity "Δv" and the direction of maximum velocity "α₀"

(α_0 =0: direction perpendicular to anti-blast gallery).

Results

Velocity perpendicular to the gallery

No tendency, cannot explain data

Analysis of velocity vs. angle

- Calculation of average velocity for binned ray directions (every 5°, 2σ uncertainty)
- Results: $v_0 = 4.69$ km/s $\Delta v = 0.9$ km/s $\alpha_0 = 43^{\circ}$ Anisotropy: 10%

Anisotropy and fractures

The direction of maximum velocity coincides with the predominant direction of fractures in the karst massif.

Isotropic seismic tomography

Ray coverage (red: 300 rays/m²)

Without taking into account the anisotropy, tomography gives unrealistically low and high velocities in areas of relatively low ray coverage

Red circles: artifacts!

Future plans: electric conductivity

- Electric conductivity should show similar anisotropy effects:
- ➡ high conductivity parallel to fractures (current may propagate mainly through fractures)
 - Low conductivity

perpendicular to fractures

Future plans: joint time-lapse study of conductivity and velocity

- Air compared to water:

 lower conductivity
 lower velocity

 compared to limestone:

 similar conductivity
 much lower velocity
 - ⇒ Drying-up of fractures should
 - increase seismic P-wave anisotropy
 - reduce conductivity anisotropy

