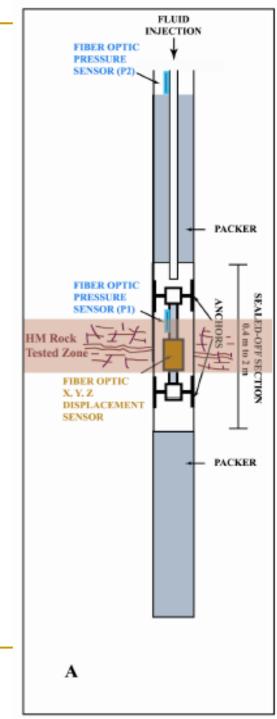
Wave propagation in 2D heterogeneous porous media : Discontinuous Galerkin method in (x,ω) domain

Bastien Dupuy Jean Virieux Stéphane Garambois LGIT Grenoble Louis de Barros UCD Dublin



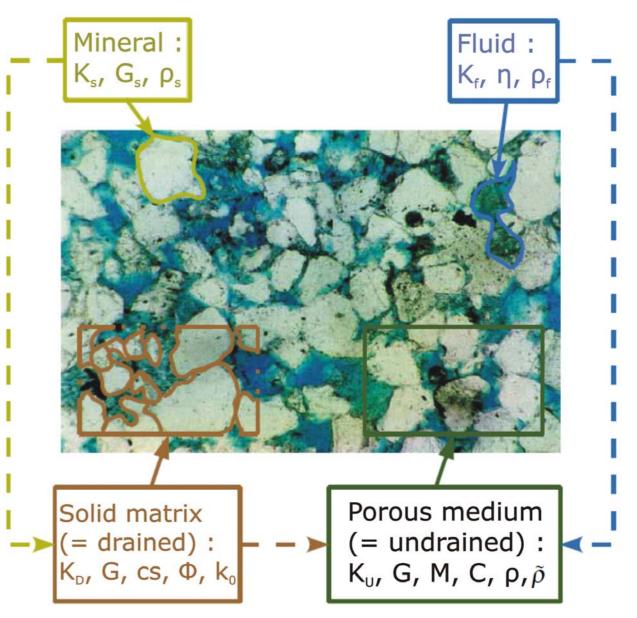
I DUST Conference

Context

D HPPP – CO_2 probe :

- displacements and fluid pressure sensors
- complex fluid pressure source
- near field waves (Biot wave)

- Poroelastodynamics
- Validation in stratified media
- Heterogeneous media
- Biot wave influence


Poroelastodynamics

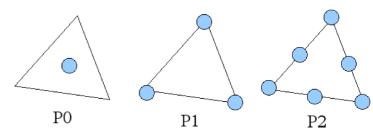
- Validation in stratified media
- Heterogeneous media
- Biot wave influence

Description of porous media

Homogenization of fluid and solid phases

De Barros, 2007

Poroelastodynamics : Biot-Gassmann equations


$$\nabla \cdot \boldsymbol{\tau} = -\omega^2 \left(\rho \ \vec{u} + \rho_f \ \vec{w} \right)$$

$$\boldsymbol{\tau} = \left[K_U \ \nabla \cdot \vec{u} + C \ \nabla \cdot \vec{w} \right] \mathbf{I} + G \left[\nabla \vec{u} + (\nabla \vec{u})^t - 2/3 \ \nabla \cdot \vec{u} \mathbf{I} \right]$$

$$-P = C \ \nabla \cdot \vec{u} + M \ \nabla \cdot \vec{w}$$

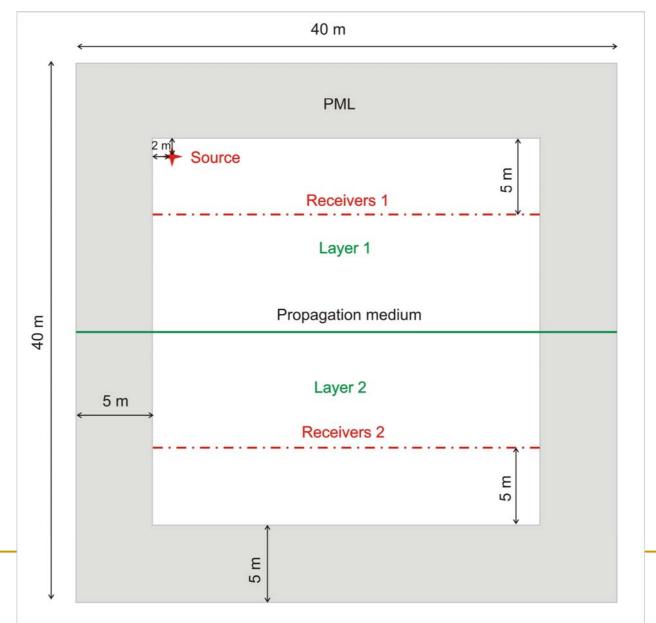
$$-\nabla P = -\omega^2 \left(\rho_f \ \vec{u} + \tilde{\rho} \ \vec{w} \right)$$

8 unknowns in 2D (5 in elastics) :

- displacements : solid u_x and u_z and relative fluid/solid w_x and w_z
- stresses $\tau_{xx},\,\tau_{zz}\,\text{et}\,\tau_{xz}$ and fluid pressure P

Numerical method : Discontinuous Galerkin (DGM) in the (x , ω) domain

- Discontinuous finite element : fluxes between triangular cells
 - Mix interpolation orders
 - Complex interfaces and topography


- Frequency modelling :
 - Porous media rheology
 - Linear system to solve : A . x = b

Poroelastodynamics

- Heterogeneous media
- Biot wave influence

- Explosive source : Ricker with a central frequency of 200 Hz
- Frequency band : from 1 to 600 Hz
- Two-layers medium :

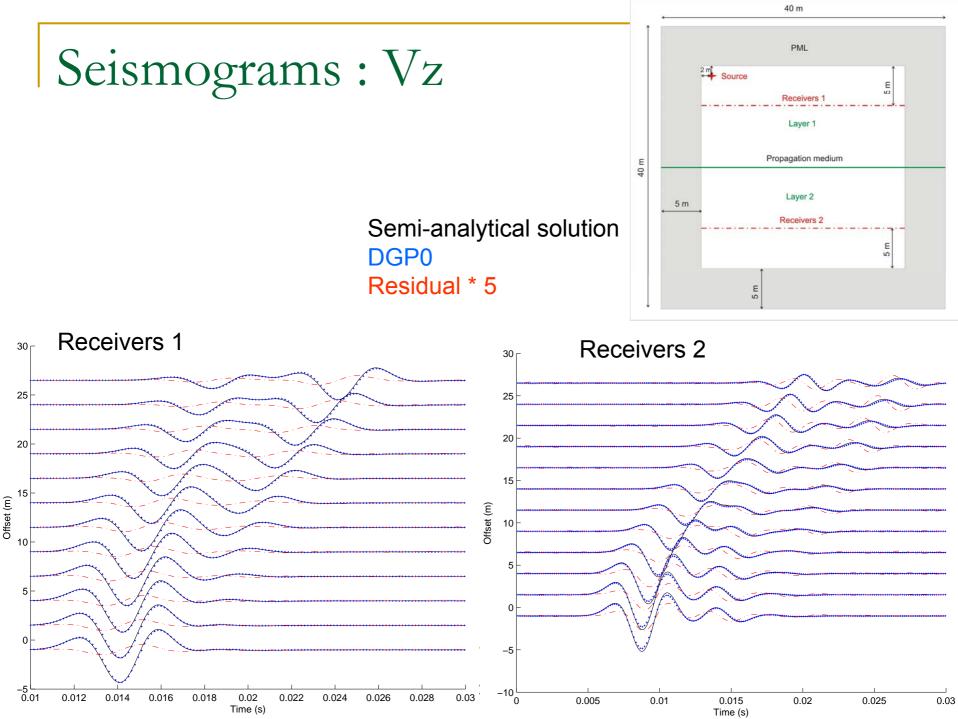
	ϕ	k_0	$ ho_f$	$ ho_s$	K_s	G_s	K_f	cs	η	m
		(m^2)	(kg/m^3)	(kg/m^3)	(GPa)	(GPa)	(GPa)		(Pa.s)	
Layer 1	0.4	10^{-11}	1000	2700	30	$21,\!67$	2.2	20	0.001	1.5
Layer 2	0.1	10^{-14}	1000	2700	40	35	2.2	20	0.001	1.5

2D maps : Vz Distance (m) 15 20 25 Distance (m) 15 20 25 15 10 30 35 10 15 30 0 5 5 35 0 0-0-5 10-10 Distance (m) 5 15 Field intensity Depth (m) 52 22 22 15 0-10 20 30 40 Depth (m) 0 0 -5 25-25 30-30x10-12 x10⁻¹² 10-35-35 Particle velocity Vz t = 1.08000 ms (m) 20t = .68000 ms Distance (m) 15 20 25 Distance (m) 15 20 25 30 0 0 10 15 35 0 10 15 30 35 0-0-5-5 10-10 1.0 30x10⁻¹⁰ Field intensity Depth (m) 52 15-15-Depth (m) 0 -2 25-25 40 f = 476.80 Hz 30-30 x10⁻¹² x10-12 35-35-Frequency t = 1.48000 ms t = 1.88000 ms

Time

Field intensity

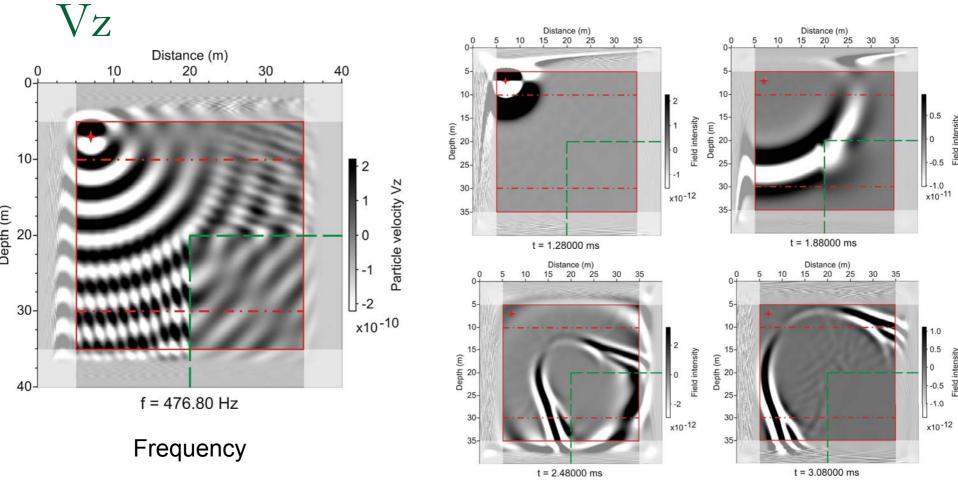
-5


0.5

0

-0.5

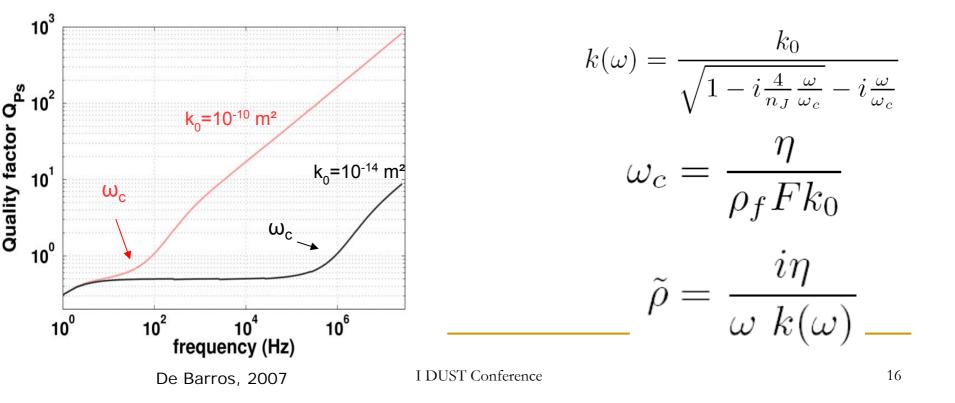
-1.0


Field intensity

Poroelastodynamics

- Heterogeneous media
- Biot wave influence

Corner edge model :



Time

- Poroelastodynamics
- Validation in stratified media
- Heterogeneous media
- Biot wave influence

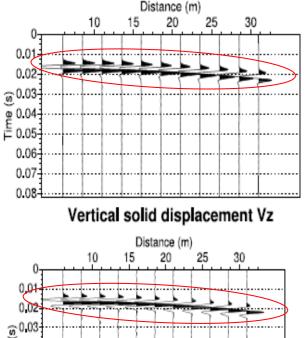
Biot wave and the flow resistance density term

- Fluid flow modelised by a generalised Darcy law
- The cut off frequency wc separates two different behaviours for the Biot wave
- Low frequency : strongly attenuated => non propagative wave, fluid-diffusion wave
- propagative wave in the high frequency domain

Parameters

 $\omega_c = \frac{\eta}{\rho_f F k_0}$

ϕ	k_0	$ ho_f$	$ ho_s$	K_s	G_s	K_f	cs	η	m
	(m^2)	(kg/m^3)	(kg/m^3)	(GPa)	(GPa)	(GPa)		(Pa.s)	
0.4	10^{-11}	1000	2700	30	$21,\!67$	2.2	20	0.001	1.5

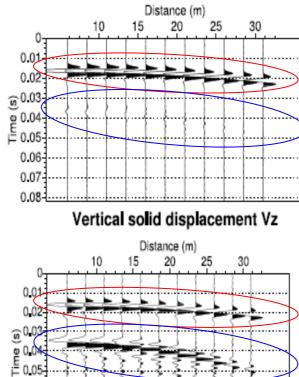

	Fluid viscosity η (Pa.s)	Permeability k ₀ (m ²)	Cut-off frequency ω_c (Hz)	Biot wave behaviour	
Medium 1	10 ⁻³	10 ⁻¹¹	25 300	Diffusive	
Medium 2	10 ⁻³	10 ⁻⁹	253	Intermediate	
Medium 3	10 ⁻¹¹	10 ⁻¹¹	2,53	Propagative	

Biot wave

P-wave

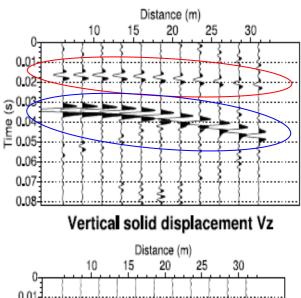
Biot wave

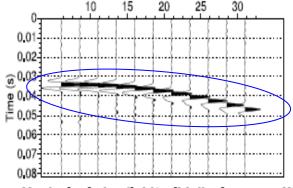
Medium 1 : diffusive


Vertical relative fluid/solid displacement Wz

0.04

0.06


0,07


0.08

Medium 2 : intermediate

Medium 3 : propagative

Vertical relative fluid/solid displacement Wz

Vertical relative fluid/solid displacement Wz

0.06

0.0

0.08

Conclusions

- Tool of modelling for wave propagation in poroelastic media :
 - □ Efficiency Discontinuous Galerkin Method : HP adaptivity
 - Complex topography and interfaces, fractured media
 - Mesh facilities : local refinement, mix of interpolation orders
 - Advantages of frequency modelling :
 - Fluid/solid interactions frequency dependent
 - Poro-visco-elastodynamics
 - Inversion strategy in frequency
- Perspectives :
 - Near field for HPPP source
 - Energy repartition at interfaces
 - Imaging with FWI