Characterisation of magnetic field fluctuations at different locations within the Laboratoire Souterrain à Bas Bruit

Aim: Compare data from the [SQUID]² magnetometer (in the Capsule), with that measured by a portable SQUID magnetometer (in other locations)

V. Andrieux, C. Clarke, S. Henry, H. Kraus, A. Lynch, V. Mikhailik, M. McCann, P. Febvre, S. Gaffet, E. Pozzo di Borgo, C. Sudre, G. Waysand, D. Boyer, A. Cavaillou, M. Auguste

cryoEDM search for the electric dipole moment of the neutron

- Non accelerator particle physics
 experiment
- Location ILL, Grenoble
- Aim: measure neutron EDM to 10⁻²⁸e-cm
- T violation
- How? Measure neutron spin precession frequency in +/– electric field
- Magnetic field drift can give false positive signal

cryoEDM SQUID magnetometer

- Track drift in the magnetic field of ≤0.1pT over 100-1000s
- Extrapolate magnetic field in neutron cell from multiple pick-up loop measurements \rightarrow 12-channel system
- SQUID sensors ~2m from pick-up loops
- High EMI environment

Small SQUID magnetometer used by Oxford group at LSBB

3-axis SQUID magnetometer

Operate in helium dewar

No magnetic shielding

Noise higher than expected above 1Hz

Intrinsic SQUID noise higher than expected

[SQUID]² magnetometer

see talk by Elizabeth Pozzo di Borgo for full details

- SQUID with Shielding QUalified for Ionosphere Detection
- 3-axis SQUID magnetometer permanently installed in LSBB capsule
- Study seismo-ionosphere coupling
- LSBB Capsule magnetic noise <2fTHz^{-1/2} above 10Hz

Seismo-ionosphere detection by underground SQUID in low-noise environment in LSBB-Rustrel, France, G. Waysand et al. Eur. Phys. J. Appl. Phys. 47, 12705 (2009) DOI: 10.1051/epjap:2008186

Measurements taken

Location	Start date	Duration [ho	urs]
Capsule	25 September	17.3	
Galerie Anti-Souffle	26 September	3.4 – disrupted (by thunderstorm?)	
	27 September	5.7	
Galerie Gaz Brûles	27 September	14.8	
Outside capsule	29 September	14.4	SQUIDs very unstable
Outdoors	30 September	15.1 🤳	noise

Calibration

200-300 turn calibration coil

Calibration signal recorded by 3 SQUIDS

- Apply current step to coil
- Model calibration coil as magnetic dipole to calculate average field through each loop
- Note in cryoEDM experiment absolute calibration will come from neutron precession frequency

Event 17 -- Fri 25-Sep-2009 17:24:41.103 (BST)

SQUID reset correction

- DAQ range ±10V
- When output approached limit, SQUID resets output jumps by $n\Phi_0$
- Software correction possible provided dB/dt < slew rate

↑ Correction possible

←Correction not possible

SQUID reset correction

• Determine magnitude of resets

Results: Capsule

Results: Galerie Anti-Souffle

Results: Galerie Gaz-Brûles

Results: Outside Capsule

Results: Outdoors

[SQUID]² – Oxford comparison

Scale Oxford data to fit [SQUID]2 signal

 $B'_{ox} = \alpha B_{ox} + \beta$ calculate α , β to minimise

 $\sum \left(B'_{ox} - B_{[SOUID]^2} \right)^2$

[SQUID]² – Oxford comparison

- Problem flux jumps
- We can only do an accurate comparison for periods without any resets

[SQUID]² – Oxford comparison

- Better fit \rightarrow more consistent value for α
- Take α values only from samples with R²≥0.97

Preliminary results

- [SQUID]² system always in Capsule
- Oxford system in remote location
- α = scaling factor [SQUID]² : Oxford

If both magnetometers measure same signal in Capsule, then deviation from 1 is due to calibration inaccuracy

Ū.			
Location	α		
	Z	NS /	EW
CAP	0.769	0.811	1.308
GAS	0.563	0.671	0.881
GGB	0.560	0.611	0.985

→ Magnitude of field fluctuations in Capsule relative to Galerie Anti-Souffle and Galerie Gaz-Brûles

$\alpha_{capsule}$	$-\langle B$	Anti–Souffle	۱
$\alpha_{Anti-Souffle}$		$\langle B_{capsule} \rangle$	

Location	Z	NS	EW
GAS	73%	83%	67%
GGB	73%	75%	75%

Are these figures accurate?

- This analysis assumes:
 - •No local magnetic field sources
 - •Field is homogeneous within capsule
 - "Shielding factor" does not change with frequency
 - •No sample selection bias when analysing data
 - •Negligible pick-up of orthogonal field components
- To assess the significance of these, we need to
 - •Take measurements at multiple locations within capsule
 - •Analyse frequency spectrum of data
 - •Limited by maximum period between resets/flux-jumps

Frequency domain analysis

Low frequency magnetic noise at LSBB

Conclusions

- LSBB is an ideal environment for testing precision magnetometry
- Noise in Galerie Anti-Souffle (GAS) and Galerie Gaz-Brûles (GGB) is comparable to that in Capsule
- Prelimary time domain analysis suggest magnitude of magnetic field fluctuations in capsule is ~74% that in GAS/GAB.
- Further analysis necessary

