Open Access
Issue
E3S Web Conf.
Volume 88, 2019
i-DUST 2018 – Inter-Disciplinary Underground Science & Technology
Article Number 03001
Number of page(s) 8
Section Geosciences
DOI https://doi.org/10.1051/e3sconf/20198803001
Published online 22 February 2019
  1. J. M. Goodkind, “The superconducting gravimeter,” Rev. Sci. Instrum., Vol. 70, no. 11, pp. 4131-4152, 1999. [CrossRef] [Google Scholar]
  2. B. Ducarme A. P. Venedikov J. Arnoso, X. D. Chen, H. P. Sun, and R. Vieira, “Global analysis of the GGP superconducting gravimeters network for the estimation of the pole tide gravimetric amplitude factor,” J. Geodyn., Vol. 41, no. 1, pp. 334-344, 2006. [CrossRef] [Google Scholar]
  3. S. Rosat J. Hinderer, and L. Rivera, “First observation of 2S1 and study of the splitting of the football mode 0S2 after the June 2001 Peru earthquake of magnitude 8.4,” Geophys. Res. Lett., Vol. 30, no. 21, p. 2111, 2003. [CrossRef] [Google Scholar]
  4. J. P. Montagner et al., “Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake,” Nat. Commun., Vol. 7, pp. 1-7, 2016. [CrossRef] [Google Scholar]
  5. B. Hector et al., “Hydro-gravimetry in West-Africa: First results from the Djougou (Benin) superconducting gravimeter,” J. Geodyn., Vol. 80, pp. 34-49, 2014. [CrossRef] [Google Scholar]
  6. D. Crossley J. Hinderer, and U. Riccardi, “The measurement of surface gravity.,” Rep. Prog. Phys., Vol. 76, no. 4, p. 046101, Apr. 2013. [Google Scholar]
  7. S. D. Carrière et al., “The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach,” Hydrogeol. J., Vol. 24, no. 7, pp. 1905-1918, 2016. [CrossRef] [Google Scholar]
  8. L. Longuevergne et al., “Local and global hydrological contributions to gravity variations observed in Strasbourg,” J. Geodyn., Vol. 48, no. 3-5, pp. 189-194, Dec. 2009. [CrossRef] [Google Scholar]
  9. T. Jacob et al., “Absolute gravity monitoring of water storage variation in a karst aquifer on the larzac plateau (Southern France),” J. Hydrol., Vol. 359, no. 1-2, pp. 105-117, Sep. 2008. [CrossRef] [Google Scholar]
  10. S. Rosat et al., “A two-year analysis of the iOSG-24 superconducting gravimeter at the low noise underground laboratory (LSBB URL) of Rustrel, France: Environmental noise estimate,” J. Geodyn., Vol. 119, pp. 1-8, 2018. [CrossRef] [Google Scholar]
  11. M. Van Camp and P. Vauterin, “Tsoft: graphical and interactive software for the analysis of time series and Earth tides,” Comput. Geosci., Vol. 31, no. 5, pp. 631–640, Jun. 2005. [CrossRef] [Google Scholar]
  12. J.-P. Boy and J. Hinderer, “Study of the seasonal gravity signal in superconducting gravimeter data,” J. Geodyn., Vol. 41, no. 1-3, pp. 227-233, Jan. 2006. [CrossRef] [Google Scholar]
  13. R. H. Reichle et al., “Assessment of MERRA-2 Land Surface Hydrology Estimates,” J. Clim., Vol. 30, no. 8, pp. 2937-2960, Jan. 2017. [CrossRef] [Google Scholar]
  14. N. Lesparre et al., “New insights on fractures deformation from tiltmeter data measured inside the Fontaine de Vaucluse karst system,” Geophys. J. Int., Vol. 208, no. 3, pp. 1389-1402, 2017. [CrossRef] [Google Scholar]
  15. D. Nagy, “The prism method for terrain corrections using digital computers,” Pure Appl. Geophys., Vol. 63, no. 1, pp. 31-39, 1966. [CrossRef] [Google Scholar]
  16. C. Perrin C. Michel, and V. Andréassian, “Improvement of a parsimonious model for streamflow simulation,” J. Hydrol., Vol. 279, no. 1, pp. 275-289, 2003. [Google Scholar]